Erforschung der exponentiell gewichteten beweglichen durchschnittlichen Volatilität ist die häufigste Maßnahme des Risikos, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, siehe Volatilität verwenden, um zukünftiges Risiko zu beurteilen.) Wir haben Googles aktuelle Aktienkursdaten verwendet, um die tägliche Volatilität auf der Grundlage von 30 Tagen Lagerbestand zu berechnen. In diesem Artikel werden wir die einfache Volatilität verbessern und den exponentiell gewichteten gleitenden Durchschnitt (EWMA) diskutieren. Historische Vs. Implizite Volatilität Zuerst können wir diese Metrik in ein bisschen Perspektive bringen. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit Prolog ist, messen wir die Geschichte in der Hoffnung, dass es prädiktiv ist. Implizite Volatilität hingegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Lesung siehe die Verwendungen und Grenzen der Volatilität.) Wenn wir uns nur auf die drei historischen Ansätze konzentrieren (links oben), haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Bewerben Sie ein Gewichtungsschema Zuerst haben wir Berechnen Sie die periodische Rückkehr. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rückkehr in kontinuierlich zusammengesetzten Begriffen ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. h. Preis heute geteilt durch den Preis gestern und so weiter). Dies führt zu einer Reihe von täglichen Renditen, von u i zu u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. In dem vorherigen Artikel (mit Volatility To Gauge Future Risk), haben wir gezeigt, dass unter ein paar akzeptablen Vereinfachungen, die einfache Varianz ist der Durchschnitt der quadrierten Renditen: Beachten Sie, dass dies summiert jede der periodischen Renditen, dann teilt diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, es ist wirklich nur ein Durchschnitt der quadratischen periodischen Rückkehr. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Wenn also Alpha (a) ein Gewichtungsfaktor ist (speziell 1 m), dann sieht eine einfache Varianz so aus: Die EWMA verbessert sich auf einfache Abweichung Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Gestern (sehr neuere) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch die Verwendung des exponentiell gewichteten gleitenden Durchschnitts (EWMA) behoben, bei dem neuere Renditen ein größeres Gewicht auf die Varianz haben. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Der als Glättungsparameter bezeichnet wird. Lambda muss kleiner als eins sein. Unter dieser Bedingung wird anstelle von gleichen Gewichten jede quadrierte Rendite mit einem Multiplikator wie folgt gewichtet: Zum Beispiel neigt RiskMetrics TM, ein Finanzrisikomanagement-Unternehmen, dazu, ein Lambda von 0,94 oder 94 zu verwenden. In diesem Fall ist das erste ( (1 - 0,94) (94) 0 6. Die nächste quadratische Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von Exponential in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muss) des vorherigen Tagegewichts. Dies stellt eine Varianz sicher, die gewichtet oder voreingenommen auf neuere Daten ist. (Um mehr zu erfahren, schau dir das Excel-Arbeitsblatt für Googles-Volatilität an.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google ist unten dargestellt. Die einfache Volatilität wirkt effektiv jede periodische Rendite um 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Kursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass Spalte P ein Gewicht von 6, dann 5.64, dann 5.3 und so weiter zuteilt. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die ganze Serie (in Spalte Q) zusammengefasst haben, haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und EWMA im Googles-Fall Sein signifikant: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (siehe die Kalkulationstabelle für Details). Anscheinend hat sich die Googles-Volatilität in jüngster Zeit niedergelassen, eine einfache Varianz könnte künstlich hoch sein. Heutige Varianz ist eine Funktion von Pior Days Variance Youll bemerken wir brauchten, um eine lange Reihe von exponentiell abnehmenden Gewichten zu berechnen. Wir werden die Mathematik hier nicht machen, aber eines der besten Features der EWMA ist, dass die ganze Serie bequem auf eine rekursive Formel reduziert: Rekursive bedeutet, dass heutige Varianzreferenzen (d. h. eine Funktion der vorherigen Tagesabweichung) ist. Sie finden diese Formel auch in der Kalkulationstabelle, und sie erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der vulkanischen Varianz (gewichtet durch Lambda) plus gestern quadrierte Rückkehr (gewogen von einem Minus Lambda). Beachten Sie, wie wir nur zwei Begriffe zusammenfügen: gestern gewichtete Varianz und gestern gewichtet, quadratische Rückkehr. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. RiskMetrics 94) zeigt einen langsamen Abfall in der Serie an - in relativer Hinsicht werden wir mehr Datenpunkte in der Serie haben und sie werden langsamer abfallen. Auf der anderen Seite, wenn wir das Lambda reduzieren, zeigen wir einen höheren Zerfall an: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, also kannst du mit seiner Empfindlichkeit experimentieren). Zusammenfassung Volatilität ist die momentane Standardabweichung eines Bestandes und die häufigste Risikometrität. Es ist auch die Quadratwurzel der Varianz. Wir können die Abweichung historisch oder implizit (implizite Volatilität) messen. Wenn man historisch misst, ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Abweichung ist, dass alle Renditen das gleiche Gewicht bekommen. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch die Zuordnung von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße verwenden, aber auch ein größeres Gewicht auf neuere Renditen geben. (Um ein Film-Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionic Turtle.) Der EWMA-Ansatz hat ein attraktives Merkmal: Es erfordert relativ wenig gespeicherte Daten. Um unsere Schätzung an jedem Punkt zu aktualisieren, benötigen wir nur eine vorherige Schätzung der Varianzrate und des letzten Beobachtungswertes. Ein sekundäres Ziel der EWMA ist es, Veränderungen in der Volatilität zu verfolgen. Für kleine Werte beeinflussen die jüngsten Beobachtungen die Schätzung umgehend. Bei Werten, die näher an einer liegen, ändert sich die Schätzung langsam auf der Grundlage der jüngsten Änderungen der Renditen der zugrunde liegenden Variablen. Die RiskMetrics-Datenbank (von JP Morgan produziert und öffentlich zugänglich gemacht) nutzt die EWMA mit der Aktualisierung der täglichen Volatilität. WICHTIG: Die EWMA-Formel übernimmt keine langfristige durchschnittliche Abweichung. So ist das Konzept der Volatilität die Reversion nicht von der EWMA erfasst. Die ARCHGARCH Modelle sind dafür besser geeignet. Ein sekundäres Ziel von EWMA ist es, Veränderungen in der Volatilität zu verfolgen, so dass für kleine Werte die jüngste Beobachtung die Schätzung umgehend beeinflussen wird, und für Werte, die näher an einem liegen, ändert sich die Schätzung langsam zu den jüngsten Veränderungen der Renditen der zugrunde liegenden Variablen. Die RiskMetrics-Datenbank (produziert von JP Morgan), die 1994 veröffentlicht wurde, nutzt das EWMA-Modell mit der Aktualisierung der täglichen Volatilitätsschätzung. Das Unternehmen stellte fest, dass über eine Reihe von Marktvariablen, dieser Wert der Prognose der Varianz, die am nächsten zu realisierten Varianz Rate kommt. Die realisierten Abweichungsraten an einem bestimmten Tag wurden in den folgenden 25 Tagen als gleichgewichteter Durchschnitt berechnet. Um den optimalen Wert von Lambda für unseren Datensatz zu berechnen, müssen wir die realisierte Volatilität an jedem Punkt berechnen. Es gibt mehrere Methoden, so wählen Sie eine. Als nächstes berechnen Sie die Summe der quadratischen Fehler (SSE) zwischen EWMA-Schätzung und realisierte Volatilität. Schließlich minimiere die SSE durch Variieren des Lambdawertes. Klingt einfach Es ist. Die größte Herausforderung besteht darin, einen Algorithmus zu vereinbaren, um die verwirklichte Volatilität zu berechnen. Zum Beispiel wählten die Leute bei RiskMetrics den folgenden 25-Tage-Tag, um die realisierte Varianzrate zu berechnen. In Ihrem Fall können Sie einen Algorithmus wählen, der Tägliche Volumen-, HILO - und OPEN-CLOSE-Preise nutzt. Q 1: Können wir EWMA verwenden, um die Volatilität mehr als einen Schritt voraus zu schätzen Die EWMA-Volatilitätsdarstellung nimmt keine langjährige durchschnittliche Volatilität ein, und für jeden prognostizierten Horizont über einen Schritt hinaus gibt die EWMA eine Konstante zurück Wert: Bewegungsdurchschnitte Verschieben von Durchschnittswerten Bei herkömmlichen Datensätzen ist der Mittelwert oft der erste und eine der nützlichsten Zusammenfassungsstatistiken zu berechnen. Wenn Daten in Form einer Zeitreihe vorliegen, ist das Serienmittel ein nützliches Maß, entspricht aber nicht der Dynamik der Daten. Mittelwerte, die über kurzgeschlossene Perioden berechnet werden, die entweder der aktuellen Periode vorausgeht oder auf der aktuellen Periode zentriert sind, sind oft nützlicher. Weil diese Mittelwerte variieren oder sich bewegen, wenn sich die aktuelle Periode von der Zeit t 2, t 3 usw. bewegt, werden sie als gleitende Mittelwerte (Mas) bezeichnet. Ein einfacher gleitender Durchschnitt ist (typischerweise) der ungewichtete Durchschnitt der k vorherigen Werte. Ein exponentiell gewichteter gleitender Durchschnitt ist im Wesentlichen derselbe wie ein einfacher gleitender Durchschnitt, aber mit Beiträgen zum Mittelwert, der durch ihre Nähe zur aktuellen Zeit gewichtet wird. Weil es nicht eine, sondern eine ganze Reihe von gleitenden Durchschnitten für jede gegebene Serie gibt, kann der Satz von Mas selbst auf Graphen aufgetragen, als Serie analysiert und bei der Modellierung und Prognose verwendet werden. Eine Reihe von Modellen kann mit gleitenden Durchschnitten konstruiert werden, und diese sind als MA-Modelle bekannt. Wenn solche Modelle mit autoregressiven (AR) Modellen kombiniert werden, sind die resultierenden zusammengesetzten Modelle als ARMA - oder ARIMA-Modelle bekannt (die I ist für integriert). Einfache Bewegungsdurchschnitte Da eine Zeitreihe als ein Satz von Werten betrachtet werden kann, kann t 1,2,3,4, n der Mittelwert dieser Werte berechnet werden. Wenn wir annehmen, daß n ziemlich groß ist und wir eine ganze Zahl k wählen, die viel kleiner als n ist. Wir können einen Satz von Blockdurchschnitten oder einfache gleitende Mittelwerte (der Ordnung k) berechnen: Jede Maßnahme repräsentiert den Mittelwert der Datenwerte über ein Intervall von k Beobachtungen. Beachten Sie, dass die erste mögliche MA der Ordnung k gt0 die für t k ist. Im Allgemeinen können wir den zusätzlichen Index in den obigen Ausdrücken fallen lassen und schreiben: Dies besagt, dass der geschätzte Mittelwert zum Zeitpunkt t der einfache Durchschnitt des beobachteten Wertes zum Zeitpunkt t und der vorhergehenden k -1 Zeitschritte ist. Wenn Gewichte angewendet werden, die den Beitrag von Beobachtungen, die weiter weg in der Zeit sind, verringern, wird der gleitende Durchschnitt exponentiell geglättet. Bewegliche Mittelwerte werden oft als eine Form der Prognose verwendet, wobei der Schätzwert für eine Reihe zum Zeitpunkt t 1, S t1. Wird als MA für den Zeitraum bis einschließlich Zeit t genommen. z. B. Die heutige Schätzung basiert auf einem Durchschnitt der bisher aufgezeichneten Werte bis einschließlich gestern (für Tagesdaten). Einfache gleitende Durchschnitte können als eine Form der Glättung gesehen werden. In dem unten dargestellten Beispiel wurde der in der Einleitung zu diesem Thema gezeigte Luftverschmutzungs-Datensatz um eine 7-Tage-Gleitende Durchschnitt (MA) - Linie erweitert, die hier in rot dargestellt ist. Wie man sehen kann, glättet die MA-Linie die Gipfel und Tröge in den Daten und kann sehr hilfreich bei der Identifizierung von Trends sein. Die Standard-Vorwärtsberechnungsformel bedeutet, dass die ersten k -1 Datenpunkte keinen MA-Wert haben, aber danach rechnen die Berechnungen bis zum endgültigen Datenpunkt in der Serie. PM10 tägliche Mittelwerte, Greenwich Quelle: London Air Quality Network, londonair. org. uk Ein Grund für die Berechnung einfacher gleitender Durchschnitte in der beschriebenen Weise ist, dass es ermöglicht, Werte für alle Zeitschlitze von der Zeit tk bis zur Gegenwart berechnet werden, und Da eine neue Messung für die Zeit t 1 erhalten wird, kann die MA für die Zeit t 1 dem bereits berechneten Satz hinzugefügt werden. Dies stellt eine einfache Prozedur für dynamische Datensätze zur Verfügung. Allerdings gibt es einige Probleme mit diesem Ansatz. Es ist vernünftig zu argumentieren, dass der Mittelwert über die letzten 3 Perioden, sagen wir, zum Zeitpunkt t -1 liegen sollte, nicht Zeit t. Und für eine MA über eine gerade Anzahl von Perioden vielleicht sollte es sich am Mittelpunkt zwischen zwei Zeitintervallen befinden. Eine Lösung für dieses Problem ist die Verwendung von zentrierten MA-Berechnungen, bei denen das MA zum Zeitpunkt t der Mittelwert eines symmetrischen Satzes von Werten um t ist. Trotz seiner offensichtlichen Verdienste wird dieser Ansatz im Allgemeinen nicht verwendet, weil es erfordert, dass Daten für zukünftige Ereignisse verfügbar sind, was möglicherweise nicht der Fall ist. In Fällen, in denen die Analyse vollständig aus einer bestehenden Serie besteht, kann die Verwendung von zentriertem Mas vorzuziehen sein. Einfache gleitende Durchschnitte können als eine Form der Glättung betrachtet werden, wobei einige hochfrequente Komponenten einer Zeitreihe entfernt werden und die Trends in ähnlicher Weise wie der allgemeine Begriff der digitalen Filterung hervorgehoben werden (aber nicht entfernen) werden. In der Tat sind gleitende Mittelwerte eine Form des linearen Filters. Es ist möglich, eine gleitende Durchschnittsberechnung auf eine Reihe anzuwenden, die bereits geglättet worden ist, d. h. Glätten oder Filtern einer bereits geglätteten Reihe. Zum Beispiel können wir mit einem gleitenden Durchschnitt von Ordnung 2, wie sie mit Gewichten berechnet werden, also die MA bei x 2 0,5 x 1 0,5 x 2 betrachten. Ebenso ist die MA bei x 3 0,5 x 2 0,5 x 3. Wenn wir Eine zweite Glättung oder Filterung anwenden, haben wir 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 dh die zweistufige Filterung Prozess (oder Faltung) hat einen variabel gewichteten symmetrischen gleitenden Durchschnitt mit Gewichten erzeugt. Mehrere Windungen können sehr komplexe gewichtete Bewegungsdurchschnitte erzeugen, von denen einige von besonderem Gebrauch in spezialisierten Bereichen, wie in Lebensversicherungsberechnungen, gefunden wurden. Bewegliche Mittelwerte können verwendet werden, um periodische Effekte zu entfernen, wenn sie mit der Länge der Periodizität als bekannt berechnet werden. Zum Beispiel, mit monatlichen Daten saisonale Variationen können oft entfernt werden (wenn dies das Ziel ist), indem Sie einen symmetrischen 12-Monats-gleitenden Durchschnitt mit allen Monaten gleich gewichtet, mit Ausnahme der ersten und letzten, die mit 12 gewichtet werden. Dies ist, weil es wird 13 Monate im symmetrischen Modell (aktuelle Zeit, t. - 6 Monate). Die Summe wird durch 12 geteilt. Ähnliche Verfahren können für jede klar definierte Periodizität angenommen werden. Exponentiell gewichtete Bewegungsdurchschnitte (EWMA) Mit der einfachen gleitenden Durchschnittsformel: Alle Beobachtungen werden gleich gewichtet. Wenn wir diese gleichen Gewichte nennen, alpha t. Jedes der k Gewichte würde 1 k betragen. So wäre die Summe der Gewichte 1, und die Formel wäre: Wir haben bereits gesehen, dass mehrere Anwendungen dieses Prozesses dazu führen, dass die Gewichte variieren. Bei exponentiell gewichteten Bewegungsdurchschnitten wird der Beitrag zum Mittelwert aus Beobachtungen, die in der Zeit mehr entfernt werden, reduziert und damit neue (lokale) Ereignisse hervorgehoben. Im wesentlichen wird ein Glättungsparameter, 0lt alpha lt1, eingeführt und die Formel überarbeitet: Eine symmetrische Version dieser Formel wäre von der Form: Werden die Gewichte im symmetrischen Modell als Begriffe der Binomialexpansion ausgewählt, (1212) 2q. Sie werden auf 1 summieren, und wenn q groß wird, wird die Normalverteilung angenähert. Dies ist eine Form der Kernel-Gewichtung, wobei die Binomie als Kernfunktion fungiert. Die im vorigen Unterabschnitt beschriebene zweistufige Faltung ist genau diese Anordnung, wobei q 1 die Gewichte ergibt. Bei der exponentiellen Glättung ist es notwendig, einen Satz von Gewichten zu verwenden, die auf 1 summieren und die Größe geometrisch verkleinern. Die verwendeten Gewichte sind typischerweise in der Form: Um zu zeigen, dass diese Gewichte auf 1 summieren, betrachten wir die Ausdehnung von 1 als Reihe. Wir können den Ausdruck in Klammern mit der Binomialformel (1- x) p schreiben und erweitern. Wobei x (1-) und p -1, was ergibt: Dies ergibt dann eine Form des gewichteten gleitenden Durchschnitts der Form: Diese Summation kann als eine Wiederholungsrelation geschrieben werden, die die Berechnung stark vereinfacht und das Problem vermeidet, dass das Gewichtungsregime Sollte strikt unendlich sein, damit die Gewichte auf 1 summieren (für kleine Werte von alpha ist dies normalerweise nicht der Fall). Die Notation, die von verschiedenen Autoren verwendet wird, variiert. Manche verwenden den Buchstaben S, um anzuzeigen, daß die Formel im wesentlichen eine geglättete Variable ist und schreibt: Während die Kontrolle Theorie Literatur oft Z anstelle von S für die exponentiell gewichteten oder geglätteten Werte verwendet (siehe z. B. Lucas und Saccucci, 1990, LUC1 , Und die NIST-Website für weitere Details und bearbeitete Beispiele). Die oben zitierten Formeln stammen aus der Arbeit von Roberts (1959, ROB1), aber Hunter (1986, HUN1) verwendet einen Ausdruck der Form: die für die Verwendung in einigen Kontrollverfahren besser geeignet ist. Bei alpha 1 ist die mittlere Schätzung einfach der gemessene Wert (oder der Wert des vorherigen Datenelementes). Mit 0,5 ist die Schätzung der einfache gleitende Durchschnitt der aktuellen und früheren Messungen. Bei der Vorhersage der Modelle ist der Wert S t. Wird oft als Schätz - oder Prognosewert für den nächsten Zeitraum verwendet, dh als Schätzung für x zum Zeitpunkt t 1. Damit haben wir: Dies zeigt, dass der Prognosewert zum Zeitpunkt t 1 eine Kombination aus dem vorherigen exponentiell gewichteten gleitenden Durchschnitt ist Plus eine Komponente, die den gewichteten Vorhersagefehler darstellt, epsilon. Zum Zeitpunkt t. Unter der Annahme, dass eine Zeitreihe gegeben ist und eine Prognose erforderlich ist, ist ein Wert für Alpha erforderlich. Dies kann aus den vorhandenen Daten abgeschätzt werden, indem die Summe der quadratischen Vorhersagefehler mit variierenden Werten von alpha für jedes t 2,3 ausgewertet wird. Einstellung der ersten Schätzung als der erste beobachtete Datenwert x 1. Bei den Steuerungsanwendungen ist der Wert von alpha wichtig, der bei der Bestimmung der oberen und unteren Kontrollgrenzen verwendet wird und die erwartete durchschnittliche Lauflänge (ARL) beeinflusst Bevor diese Kontrollgrenzen kaputt sind (unter der Annahme, dass die Zeitreihe einen Satz von zufälligen, identisch verteilten unabhängigen Variablen mit gemeinsamer Varianz darstellt). Unter diesen Umständen ist die Varianz der Kontrollstatistik: (Lucas und Saccucci, 1990): Kontrollgrenzen werden gewöhnlich als feste Vielfache dieser asymptotischen Varianz gesetzt, z. B. - 3 mal die Standardabweichung. Wenn beispielsweise Alpha 0,25 und die zu überwachenden Daten eine Normalverteilung N (0,1) haben, wenn die Kontrolle begrenzt wird, werden die Regelgrenzen - 1.134 sein und der Prozeß erreicht eine oder andere Grenze in 500 Schritten im Durchschnitt. Lucas und Saccucci (1990 LUC1) leiten die ARLs für eine breite Palette von Alpha-Werten und unter verschiedenen Annahmen mit Markov Chain Verfahren ab. Sie tabellieren die Ergebnisse, einschließlich der Bereitstellung von ARLs, wenn der Mittelwert des Kontrollprozesses um ein Vielfaches der Standardabweichung verschoben wurde. Zum Beispiel ist bei einer 0,5-Schicht mit alpha 0,25 die ARL weniger als 50 Zeitschritte. Die oben beschriebenen Ansätze werden als einzelne exponentielle Glättung bezeichnet. Da die Prozeduren einmal auf die Zeitreihen angewendet werden und dann analysiert oder kontrolliert werden, werden Prozesse auf dem resultierenden geglätteten Datensatz durchgeführt. Wenn der Datensatz einen Trend und saisonale Komponenten enthält, kann eine zweidimensionale oder dreistufige Exponentialglättung als Mittel zur Beseitigung (expliziten Modellierung) dieser Effekte angewendet werden (siehe weiter unten den Abschnitt "Vorhersage" und das NIST-Beispiel). CHA1 Chatfield C (1975) Die Analyse der Times-Serie: Theorie und Praxis. Chapman und Hall, London HUN1 Hunter J S (1986) Der exponentiell gewichtete gleitende Durchschnitt. J von Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Exponentiell gewichtete Moving Average Control Schemes: Eigenschaften und Erweiterungen. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Kontrolltabelle Tests basierend auf geometrischen Moving Averages. Technometrics, 1, 239-250
No comments:
Post a Comment